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PREFACE 

, 
Before a space vehicle is  ever flown, a vast amount of guidance 

and trajectory analysis is performed in order that the flight will  be the 

best possible of the class of flights that satisfy conditions which de- 

fine a given mission. 

mal trajectory problem, i. e . ,  the determination of the solution t o  a 

system of nonlinear differential equations with split boundary conditions 

whose solution is usually effected by numerical methods on a high-speed 

digital computer. With forthcoming deep- space missions, current -day 

numerical methods may be detrimental to  complete mission analyses 

because of the expensive computer time involved. Thus, the need 

exists for  analytic solutions. 

A portion of this analysis is concerned with the opti- 

This thesis discusses the application of two classical Hamiltonian 

perturbation techniques to  the problem of obtaining good approximate 

analytic solutions t o  the optimal trajectory problem. These methods 

a r e  applied to a simple optimal trajectory problem to  determine their 

feasibility in obtaining approximate solutions to more general prob- 

lems and to  demonstrate the theory of the methods. 
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'. ABSTRACT 

This thesis is concerned with the development of analytical 

methods for the optimal trajectory problem. 

Pontryagin maximum principle, the optimal trajectory problem can 

be defined by a Hamiltonian function and an appropriate set  of boundary 

conditions. 

tonian perturbation techniques of celestial mechanics. 

most popular methods, the Poincare small-parameter expansion 

method and the Hamilton- Jacobi method, a r e  discussed and their 

adaptation to the problem is investigated. 

Upon application of the 

This allows the application of all of the classical Hamil- 

Two of the 

/ 

The Poincare! method is developed for a general low-thrust 

problem where the gravitational forces a re  dominant. 

tion of the boundary conditions, which is not straightforward, is dis- 

cussed for both low-and high-thrust type analyses. 

Zermelo's problem, i s  presented to demonstrate the theory and the 

application of the boundary conditions. 

The applica- 

A simple example, 

The Hamilton-Jacobi theory is developed with consideration t o  

optimal trajectory analysis, and a recursive scheme for generating 

perturbation equations is presented. A nonclassical definition f o r  the 

canonical transformation is given, and a relaxed condition for develop- 

ing a base solution for  the perturbation theory i s  presented. 

pertinent aspects of the theory 'are applied to  Zermelo's problem t o  

demonstrate their application. 

The 

V 



The analyses show that upon familiarization with the basic 

assumptions of each method, the procedures are relatively straight- 

forward. 

each problem can be attacked in more than one manner to facilitate 

an analytic solution. 

The methods are applicable in a variety of ways s o  that 

vi 
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CHAPTER I 

INTRODUCTION 

In the p st decade there has been cmsid  rable interest  in  the 

By necessity, the optimal trajectory problem for space vehicles. 

majority of the work in this area has been of a numerical nature since the 

usual problem is highly nonlinear. Hence, t o  obtain worthwhile results 

within a reasonable period of time, rigorous attempts for obtaining 

approximate analytic solutions have been bypassed. 

u re  space missions will have relatively long travel periods and, thus, 

will require an enormous amount of computer time to  perform the 

mission studies if only numerical methods a r e  available, it appears that 

good approximate analytic solutions will be a necessity. 

Since many fut- 

In celestial mechanics, approximate solutions to  many nonlinear 

problems have been obtained by the application of various Hamiltonian 

perturbation procedures. These procedures a r e  especially suited for  

nonlinear problems, and since there exists a Hamiltonian fo r  the opti- 

mal trajectory problem, there  is reason to  believe that Hamiltonian 

perturbation procedures may give the needed approximate solutions. 

In the following chapters, two of the main Hamiltonian per tur-  

bation procedures are presented and adapted to  the optimal space 

trajectory problem. The first method, the Poincarg small-parameter 

expansion method, reduces the nonlinear problem to  a sequence of l inear 

problems which converge rapidly to  the solution if there  exists an accep- 

table small -parameter in the problem. This method, then, is restricted 

1 
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to problems where a small-parameter exists. However, in most opti- 

mization problems, one can usually modify the problem to  include a 

small-paramete r. 

The second method, the Hamilton-Jacobi method, is more power- 

ful  then the Poincarg method, but the analysis is correspondingly more 

difficult. 

since it can be paralleled crudely to  the superposition property of linear 

systems. 

which a Hamiltonian function exists a s  a sum of te rms ,  i. e. , 

This method is especially powerful for nonlinear problems 

For  example, suppose that one has a dynamics problem for  

H E H  + H + .  . . . +  Hn, 1 2 

where there are no restrictions on the Hi, that is, they need not repre-  

sent physically meaningful problems. The Hamilton- Jac  obi perturbation 

theory allows one to  t reat  the to t a l  problem as a sequence of n subprob- 

lems, i. e., one first determines the solution of the Hamilton-Jacobi 

equation for H and then uses this solution t o  obtain the solution of 1’ 

the problem defined by H1 + HZ, and so  on until the total problem is 

solved, or a valid approximation is obtained. 

It has only been in the last two years  that investigators have pub- 

lished reports on the use of Hamiltonian perturbation theory in optimal 

trajectory analysis. Of course, straight-forward applications of the 

small-parameter expansion method have been in use over a longer per-  

iod of time, but these applications did not take advantage of the 

Hamiltonian formulation. 
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Miner1* noted the attractive form of the Hamiltonian for the low- 

thrust problem, and recently obtained a solution for the Hamilton-Jacobi 

equation when thrust is zero. Thus, for missions where gravitational 

forces are equal to  o r  greater than the thrust forces, this solution can 

be used as the base solution for  a Hamiltonian perturbation theory. The 

form of his solution, L e . ,  in terms of canonic constants, also suggests 

the development of guidance functions by the perturbation theory, where 

relations between the final canonic constants and the current state of the 

vehicle would need t o  be determined. 

In Ref. 2, Nafoosi and Passmore attempted t o  obtain a closed- 

form solution t o  the high-thrust problem in an inverse-square 

gravitational field by the classical Hamilton-Jacobi theory. 

approach was that of f i rs t  solving the zero-gravity problem, then per- 

turbing this solution into the solution of the constant-gravity (i. e. , flat - 

earth) problem, and finally, perturbing the c onstant-gravity problem 

into the inverse-square gravitational field solution. 

a closed-form solution for the inverse-square problem, but did obtain 

a first-order approximation. 

Hamilton-Jacobi perturbation method in high-thrust analyses is seriously 

hindered by the lack of a general canonical transformation procedure. 

A somewhat different approach to  trajectory analysis by a 

Hamiltonian perturbation procedure has been brought forth by Payne. 

An analogy between the generalized Hamiltonian of control theory and 

the Dirac Hamiltonian of quantum mechanics is shown, and suggestions 

a r e  given as to how the Dirac theory can be applied to control theory. 

Their 

They did not obtain 

They concluded that the application of the 

3 

4 

* 
Numbers indicate references as listed in the Bibliography. 
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In particular, it is shown that if one formulates the optimal trajectory 

problem by Dirac's generalized Hamiltonian dynamics, the Pontryagin 

maximum principle can be applied to  the resultant Hamiltonian, which 

has the advantage of being canonical in all of its variables, However, 

the incorporation of the boundary conditions presents some difficulties 

when this method is applied. 

The Delaunay method, which i s  not investigated in this thesis, 

is another Hamiltonian perturbation technique which might be appli- 

cable to optimal trajectory analysis. In Ref. 5, Passmore modified this 

method to the trajectory problem in search of a solution t o  the low- 

thrust problem, and obtained a first-order approximation. There 

exist other methods similar to  the Delaunay method, e. g., von 

Zeipel's and Lindstedt's, but all of these are Hamilton-Jacobi per-  

turbation methods applied to particul ar types of celestial mechanics 

problems. Thus, similar methods may exist f o r  optimal trajectory 

problems, but the restrictions on these methods will probably differ 

f rom those imposed on the celestial mechanics procedures. 

Without using the Hamiltonian to  form the perturbation equa- 

tions, Anthony, 

parameter expansions t o  solve optimal trajectory problems. 

performed a high-thrust analysis f o r  an escape trajectory (i, e.,  one 

which escapes a given inverse-square gravitational field), and the approx- 

imate analytic results compared favorably with independent numerical 

studies. 

fe r  problem with the difference between the initial and final radius 

vectors a s  the small-parameter. 

d integrate . their f irst-order perturbation equations and thus, did not 

and McIntyre and Crocco' have recently used small- 

Anthony 

McIntyre and Crocco studied the close circular orbit t rans-  

But, they had t o  numerically 



thrust problem, but one can easily generalize to  the high-thrust problem 

by rearrangement of the Hamiltonian and suitable choice of a small- 

parameter. 

small-parameter assumptions, it will be developed in general, and 

many of the subtle points of the theory which apply t o  the optimal 

trajectory problem will  be discussed. 

methods is that they a r e  dependent upon the knowledge of a base solu- 

tion, i. e . ,  a closed-form solution t o  a portion of the total  problem, 

however, several closed form solutions of nontrivial problems a r e  

known 8’ 9’ lo and research is  currently being performed in this area. 

Since the Hamilton-Jacobi method is not dependent upon any 

The main restriction on both 

5 

obtain an analytic solution. 

In Chapter 111, the Poincar; method will be developed for the low- 

I . 
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CHAPTER I1 

FORMULATION O F  THE OPTIMAL TRAJECTORY PROBLEM 

The problem under consideration is that of determining the 

optimal path of a vehicle propelled by a continuously thrusting engine. 

The equations of motion for a general space trajectory problem can 

be written as a system of f irst-order,  ordinary differential equations 

dx 
dt x z -  

where x 

T ponents of the vehicle, - m 

is the resultant set of t e rms  associated with the nonthrust forces, 

(5, . . , xn 1 is the set  of position and velocity com- 

is the thrust  acceleration, f = {f 1'"" fn> 

in the accelera- T 
{ g i ,  . .., gh } is the set  of coefficients of - m 

* A  
-': 

g'  

tion equations, and u 

which uniquely determine the thrust direction. 

{ul, . . . , u } is the set  of control variables m 

To obtain a solution of Eq. (2. l),  u(t) must be determined for a 

specified mission. 

conditions will be included in the mission specification. 

The designation of an appropriate set  of boundary 

Since it is 

possible that the u(t) which satisfies these conditions will  not be unique, 

the calculus of variations or  the Pontryagin maximum principle can be 

used t o  determine the optimal choice for u(t). The u(t) which extre- 

mizes some specified scalar function of the terminal state, say 

G(xf, tf), while satisfying Eq. (2. 1) and the appropriate boundary condi-' 

tions will be termed optimal. The function G(xf, tf) will be referred to 

a s  the performance index. 

6 
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t -  11.1 The Necessarv Conditions for an ODtimal Traiectorv 

The necessary conditions for an extremum can be formulated 

using either the classical calculus of variations or Pontryagin's maxi- 

mum principle. 

closely associated with Hamiltonian mechanics. 

The maximum principle will be used here since it i s  

The application of the maximum principle in determining the 

necessary conditions f o r  an extremum can be described as follows: 

Let the equations of motion f o r  a dynamical system be given by 

f = F(x,u,t)  

where x and F(x,u, t )  a r e  n-vectors, and u is a m-vector. Asso- 

ciated with the set  of state variables {xl, . . . , x }is a set of Lagrange 

multipliers { X1,. . ., Xn}, which a r e  introduced to  define the scalar func- 

n 

ti on n 
H(x, X, u, t )  = C XiFi(x, u, t). 

j =I. 

The scalar H(x, x ,  u, t) is called the generalized Hamiltonian since it 

closely resembles the Hamiltonian function defined in classical mechanics. 

W i t h  these definitions, the theory states that the following conditions 

must be satisfied along an optimal trajectory: 11 

(i) the generalized Hamiltonian, 

control variables for  a maximum value of the performance 

index, o r  H must be a minimum in the control variables for  

H, must be a maximum in the 

a minimum value of the performance index; and 

(i = 1,. . . , n). and Xi = - -  aH 8H (ii) 2. = - a x. 
1 a x i  1 

Note that i f  one considers the x.'s 

X.'s a s  generalized momenta, Eqs. (2.3) correspond to  Hamilton's 

as generalized coordinates and the 
1 

1 
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equations in classical mechanics." F rom this point forward, H will be 

referred to  as the Hamiltonian, and Eqs. ( 2 . 3 )  will  be referred to as 

Hamilton's equations, or the canonical equations. 

For ease of presentation, it will be assumed that the performance 

index is to  be minimized. Then if H(x,A , u, t) is continuous in u(t), 

condition (i) can be satisfied by requiring that 

aH (i.a) - = 0, i =  1 ,..., m; au, 

6Ui bu. > 0. a2H m m 

aU+. J -  
(i.b) Z 

i = 1  i = 1  J 

The maximum principle will  now be applied to  the general equa- 

tions of motion, i. e . ,  Eqs. (2 .1) .  By Eq. (2.2), the Hamiltonian for 

Eq. (2. 1) is 

n 
H =  Z 

i = l  

It will be assumed that t 

m 

Le control variables can be uniquely deter- 

mined as functions of the state variables and the Lagrange multipliers 

f rom condition (i. a), i. e.,  

u. = ui(x,X) (i = 1, .. . , m). 
1 

Then, the functional form of Eq. (2.9) is given by 

where g(x, A ,  t) g'[x, u(x, A ) ,  t]. Hence, it follows that 

n T 
m 

n 
H(x,A,t) = Z Aifi(x,t) t - . Z Xigi(x, A , t ) .  

i = l  i = l  
(2.5) 
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9 

n by Eqs. (2.3), necessary conditions for a minimum a r e  given by 

aH T 2. = - = f i ( X , t )  + -g. (x,X,t) 
1 axi m i  

( i=  1 , .  . . , n )  

11. 2 Mission Cfiteria 

As stated above, the designation of conditions which must be satis- 

fied at the initial and terminal time will be a part of the description 

of any specific mission. The conditions to  be satisfied at the ends of 

. 

. 

the trajectory will be referred to  as the set  of boundary conditions. 

fact, if a system of 2n first-order, ordinary differential equations is to 

In 

have a well-defined solution, then 2n + 2 conditions must be given if the 

problem is formulated a s  a two-point boundary value problem. In this 

thesis, only missions with fixed initial states will be considered, i. e. , 

x(t ) = x The 

final state will not be assumed fixed, in general, s o  p - n functions of 

the terminal variables wi l l  be given t o  specify the terminal surface, i. e. , 

Mp}. 1’ . - - ,  M(xf,tf) = 0 where M = {M 

conditions a r e  necessary t o  make Eqs. (2.6) a well-defined system. The 

calculus of variations gives these remaining conditions and they a r e  

known as natural boundary conditions (or transversality conditions). 

Actually, these conditions a re  additional necessary conditions which the 

optimal trajectory must satisfy. l3  The general expression f r o m  which 

is given where (x t ) represents (n  + 1) - conditions. 
0 0 0’ 0 

Thus, (n + 1 - p) additional 

these conditions can be derived at the final time is 



c 
1. 

1 

c 

. 

aG aG 
n n n 

i =1 
[( C X.f.)dt- E X.dx ]t t E (-dx ) +-dt =O. 

i i  ax. i tf atf f i =1 f i=l 1 
1 1  

Thus, if one specifies p geometrical boundary conditions at the final 

time, p of the differentials dx , . . . , dx , dt can be determined 
f f 

n 
If 

in te rms  of the (n + 1 - p) remaining differentials. Then with these 

relations substituted into Eq. (2. 7) above, the coefficients of the 

10 

(2 .  7) 

(n + 1 - p) independent differentials can be equated to zero to give the 

transver sality conditions. 

Let N(x X .t ) = 0 be the (n t 1 - p)-vector of transversality 
f '  f - f  

conditions determined f rom Eq. (2. 7). Then, the optimal trajectory 

problem can be stated as follows: 

Optimal trajectory problem: Let H(x, A, t)  be the Hamiltonian 

for a system of the form of Eqs. (2. 1). Find the 2n functions 

{xl(t) ,  . . . , x (t) ,  Xl(t), . . . , X (t)} which satisfy Hamilton's 
n n 

equations and the boundary conditions x(t ) = x , M(xf, tf)  = 0,  
0 0 

and N(x A , t ) = 0. 
f '  f f 

Thus, the optimal trajectory problem bas been reduced to a two-point 

boundary value problem described by a Hamiltonian function. In the 

following chapters, methods f o r  obtaining a solution to this problem, 

which a re  based on the Hamiltonian function, wi l l  be developed. 

Since this thesis is mainly concerned with the development of 

Hamiltonian perturbation techniques, such a reas  as bounded control, 

sufficient conditions, e tc . ,  with respect to the techniques, a r e  not treated. 
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Thus this thesis i s  concerned with trajectories which satisfy the necess- 

ary conditions for an optimal trajectory and which do not involve inequality 

constraints . 
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CHAPTER I11 

THE POINCARE/ SMALL-PARAMETER EXPANSION METHOD 

In 1892, Poincar;l4 introduced the small-parameter expansion 

method, and although its use was rather limited for a half-century 

after its introduction, it has been extremely useful in solving non- 

linear problems in the past twenty years. The usual developments of 

the method do not make use of the Hamiltonian, but here the development 

will depend on the existence of this function. 

In trajectory analysis there exist many small-parameters, but 

the particular mission usually determines which parameters  will be 

small  (e. g., high-thrust, low-thrust missions). F o r  clarity of pre- 

sentation, it will be assumed that the thrust-acceleration, - is the 

small-parameter in this development. 

m’ 

This assumption is valid for a 

low-thrust transfer trajectory where the gravitational forces a r e  domi- 

nant (e. g., earth-escape missions, near circular orbit transfers,  etc. ). 

Furthermore,  the vehicle mass  will  be assumed constant for  the develop- 

ment presented in this chapter. 

treated as  a variable small-parameter and it is shown that the constant 

In Appendix A, the quantity 1 is m 

mass  assumption is true t o  a first-order approximation. 

111. 1 Development of the Perturbation Equations 

As  noted above, 

some space missions. 

by Eq. (2.6) satisfies certain analyticity conditions, 15’ 16to be stated be- 
T 

low, power ser ies  expansions with - m 

T - assumes the role of a small-parameter in  
m 

Thus, if the system of differential equations given 

a s  the small-parameter may be 

12 
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used either to obtain a solution to the optimal trajectory problem or  to 

obtain approximate analytic solutions which may give valuable informa- 

tion. 

Consider the form of the Hamiltonian in Eq. (2.5): 

(3.1) 
T n  T n 

H = Z Xifi(x,t) + - ( Z Aigi(x,X,t)) 5 H + m  HI. m 0 i = l  i = l  

The above definitions fo r  Ho and H1 suggest a Hamiltonian perturbation 

technique17 with H = Ho (i. e., the nonthrust case) as the base solution. 

This procedure is especially suited for the recent advances in analytic 

differentiation and manipulation by digital computers, 18', '9 since only 

the Hamiltonian and the associated canonical variables would need to 

be specified to  determine the perturbation equations for a given mission. 

The perturbation equations will now be developed. Assume for the 

nonthrust system of Hamilton's equations, i. e . ,  

= f. ; X!O) (to) = x. 0 
aH p) E - 

1 axi 1 1 1 0  

(i = 1, .  . . , n )  ( 3 . 2 )  

n ar, 
that the functions fi and I; A .  -2- a r e  analytic in t, xi, and Ai 

j = l  3 axi 

in the range [t tf] and i n t h e  domain {IIxi ( 0) - xioil 5 a, llA:o) - c 11 0' i 

< p: i = 1,.  . . , n, and a,p a r e  real numbers }. The c-vector is a s  yet - 
unspecified but must belong to a class of vectors which will guarantee 

the analyticity properties of Eqs. ( 3 . 2 )  in the range [ to, tf]. Then, if 

the perturbing functions due to thrust in Hamilton's equations, i. e.,  the 

T T functions { - gi(x, 1, t); - 
m m j = 1  J axi 

n agj(Xs 1, t) 
A .  - }in Eqs. ( 2 . 6 ) ,  a r e  analytic 
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(O)  t} and a r e  continuous with respect t o  t in 

the range [t t fJ  and the domain { I I x .  - x!")II < a, Illi - 1 io)ll C p, 
T - < y: a, P, Y a r e  real  numbers, and 'i = 1,. .., n), then there exists m -  

in {x. - x. ( 0 )  
1 i '  rn' 

- - 0,  1 1 

a formal solution of Hamilton's equations with the following functional 

form.  
2 

Xi(t) = X!O) (t) t - T x. ( 1 )  (t) +($) x!2n (t) + . . . 
1 m i  1 

(i = 1, ..., n) (3.3) 

X . ( t )  1 = A i o '  (t) t T Ai ( 1 )  (t) + (&)2 A!2) (t) t ,... .,, 

where the x!j) and h'j) are t o  be determined. 
1 i 

Assume that the solutions of Eqs, (3.2) a r e  known as functions of . 
t and the unknown constants ci(i = 1,. . . , n). The functional deviations 

. 

of the undetermined solutions of Eqs.(2.5) and the known solutions of 

Eqs.(3. 2) a r e  defined by: 

T ( 1 )  T 2 (2) (t) + . .. h.(t) =xi(t) - x!O) (t) = - x. +(-&-) xi 
1 m i  1 

(i = 1,. . . , n) (3.4) 

k.(t) = X . ( t )  - hi ( 0 )  (t) = - T h!')(t) + (-) T 2 Ai (2) (t) + . . . . 
1 1 m i  m 

Then, 

xi(t) = xjo) (t) + hi(t) 

hi(t) = A!') 1 (t) + ki(t). 
(i = l , . .  ., n) 

If one assumes that the Hamiltonian is analytic in the variables 

[xi(t) - xi(') ( t)]  and [hi(t) - X (O)  (t)] in the range and domain of defini- 

tion, it follows that H(x, A ,  t )  can be expressed by the following convergent 

Taylor series: 
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n 
Z [(E) h; + H(x, A, t)  = H(x(O) + h, X(O) + k) =H(x(O), A ( o ) )  + ax. 3 . i = l  1 

n n 
+ (-) k.] + -  C Z ) h.k. + aH 1 

ax.ax 0 1 J +2(pxiax o 1 J 
i + 1 j  = 1  1 j  j 

ahi 0 2 

a2H +(eo kikjl + e * -  

J 
(3.5) 

Then, substitution in  T Recall f rom Eq. (3. 1) that H ZE H + 
H1. 0 

Eq. 3.5 gives 

0 T aH1 aH 

m ax. o 1 m axi h. + ( -  ahi I o  ki + -(-Io ki I + T aH1 +-(- 
1 

)o k.k. + 0 
a2H 0 T a2H 

+ 2( axial j 10 hikj 1 J  hikj + ( a h . a ~  1 j  1 J  

a2Hl 
)o k.k.1 +. . . T 

+m( aAiaX j 1 J  

Further  substitution of Eqs. (3.4) in the above expansion for  the 

hi's and k. 's gives a power ser ies  in - . 
T coefficients of like powers of - one obtains an equation of the following m 

form 

T 
1 m If one then combines the 

.... H =H(O) + -  H (l)  + (--) H(2) + m 

But, by the maximum principle, Eqs. (2. 6) must be satisfied, s o  

. 
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(i = l , . . . ,  n) ( 3 . 6 )  

Now, consider the assumed solutions in Eqs. (3.3). Since these 

expressions are strictly functions of time, their time derivatives a re  

identical to  the power ser ies  expansions for Hamilton's equations 

(Eqs. (3. 611, i. e.,  

. 

. 

where i = 1,. . . , n. Then, equating the coefficients of like powers of 

the independent parameter (-), the following perturbation equations a r e  

obtained 

T 
m 

(i = 1, ..., n) 0 
1 ax. 

1 

(3-  7) 
0 (1) ] n aZHo ' (1) a2H 

1 ax. I('- axiax. 1 0 "j + ( ahia+- 10 'j 
-1  j = 1  J 

a2H 
0 (1) ) A;')], .. 

n a2H 

- z  [(axiax )o "j + (axiax. 0 , 1 ax. 10 
21)  = - ( -  aH1 

j = l  j J 1 

and so on for the higher order approximations. . 
The resultant systems of equations are linear, f irst-order 
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ordinary differential equations. 

mth- approximation is dependent upon the first, second . . . , and (m-1) 

The solution of the equations for  the 

solutions, but only 2n equations must be solved at each step. Further- 

more,  since H is linear in the X.'s, all partial derivatives of H 

with respect t o  more than one X. vanish. 

0 1 0 

1 

The above development is a special case of the development in 

Appendix A where the mass is not assumed t o  be constant. The pertur- 

bation equations through second-order a r e  developed there. 

T not use - as the small parameter if mass  is variable since the time m 

derivative of the small  parameter must be evaluated and with mass 

One should 

variable one obtains : 

where = I m I  and m < 0. This shows that m and T have different 

powers and thus the ratio (-) does not correspond t o  a power-series 

term. Of course one might multiply (-) by (+ and then include (T) 
m T 2  

in the coefficient of (- ) , but the analysis is l e s s  confusing if  one just m 

uses - as the small parameter. 

T 
2 

T T 1 m 

2 

1 
m 

20 111. 2 Series Truncation Criteria 

With an approximate scheme of this type, one must have some way 

of knowing whether the power ser ies  solutions are convergent and, if s o ,  

how rapidly they converge. An approach to  the problem of performing the 

e r r o r  analysis which is straightforward and relatively easy to implement 

numerically will now be presented. 
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Let X (t) andA (t) represent the qth-order approximate solutions 
9 9 

for x(t) and X ( t ) ,  i. e.,  

x (t)  = X(O)  (t) + $ x(1) (t) +. . . + ( T p  x(q) (t) 
9 m 

where q can be any non-negative interger. The time derivatives of 

X and A are similarly 
9 9 

Recall the governing differential equations 

k. = fi(X’t) t - T gi ( X , X , t )  
1 m 

( i =  1,  ..., n) 

Then, an indication of the validity of the qth- order approximate solu- 

tion is given by the following differences: 
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An indication as to how rapidly the series in Eqs. 3 . 8  are con- 

verging can be expressed by the numbers J(O), J( l), . . . , J(q), . . . , 
where 

n 
{ z [P!q) (t)Plq) (t) + Qiq) (t) Qiq) (t)]} dt. 

0 

One can then determine when to terminate the procedure by comparing 

the successive values of the J(q)’s. 



CHAPTER IV 

THE HAMILTON-JACOB1 METHOD 

In Chapter 11, a definite analogy between the Hamiltonian of 

classical mechanics and the generalized Hamiltonian of control theory was 

shown. 

ized Hamiltonian was expressed as an explicit function of the state 

variables, Lagrange multipliers, and time, i. e.,  

In fact, upon application of the maximum principle, the general- 

H = H(x,h, t). 

Since Hamilton's equations, with the usual analogy between {state 

variables, Lag range multipliers } and {generalized c oor dinat e s , general - 
ized momenta), describe the optimal system associated with this 

generalized Hamiltonian, the mathematical methods of celestial mech- 

anics, which assume a Hamiltonian function, may then be applied to  the 

optimal trajectory problem. 

celestial mechanics i s  that of Hamilton-Jacobi. 

The foremost Hamiltonian method of 

The basic motivation for the Hamilton-Jacobi theory is the follow- 

ing. Consider, for example, an initial-value problem described by: 

2 =f(x, t); x(to) = x 

given n constants of the motion, say P(x, t) = K, then one need only 

invert these algebriac equations t o  obtain the solutions tofhe given system, 

i. e.,  x =x(K,  t). 

represent n constants of the motion, and in fact, any set of n indepen- 

dent constants of the motion must be some combination of the initial 

conditions. 

where x, f, and f represent n-vectors. If one is 
0' 

Note, however, that the initial conditions xo actually 

The Hamilton-Jacobi theory is concerned with the development 

. 
20  
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of the conditions which must be satisfied if a transformation between the 

original variables x and an independent set  of constants of the motion 

is t o  be effected. 

IV. 1 Basic Hamilton-Jacobi Theory 

It will be assumed, as a starting point for this development, that 

the Hamiltonian is given a s  an explicit function of state variables, 

Lagrange multipliers, and time, i. e.,  the maximum principle has been 

applied, a s  discussed in Chapter 11, to  remove the control variables f r o m  

the Hamiltonian. 

For a given problem, the Hamiltonian is a function of the chosen 

coordinate system, and, thus, the complexity of the problem may be 

reduced by a judicious choice of coordinates. For  example, i f  a var- 

iable does not appear explicitly in H(x,X , t), then the conjugate of that 

variable is a constant of the motion. A variable which does not appear 

explicitly in H is called a cyclic variable. 

Hamilton-Jacobi theory gives a procedure for determining a coordinate 

As will be shown, the 

system in which all of the canonical variables a r e  cyclic. 

Since the Hamiltonian is dependent upon the choice of coordinates 

and Hamilton's equations must be satisfied with respect to  the chosen 

Hamiltonian, the transformation from one Hamiltonian system to ano- 

ther is of special importance and is defined as follows. 

Definition 4. 1: Let {x, X } and H(x, X, t) denote the original 

Hamiltonian system, and let {Q = Q(x, X, t), P = P(x, 1, t) } represent 

a nonsingular transformation. Furthermore, let  p E%, . . . , p n } t  

1x1, - 9 x n' 1 1,  A n}, U E { U l t  9 Un}= {Ql ,  - 8 Qn, P1, *sPn}, 

and let {p, U} be a set of 2n independent variables. The transformation 
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{Q = Q ( x , k ,  t), P = P(x,A , t)} is called a canonical transformation if there 

exist differentiable functions K(Q, P, t) and F(p, U, t) such that 

is an identity in {p, U, bI U}. 

It is well known that a canonical transformation of the variables 

{x,h } preserves  the Hamiltonian form of the equations of the system, 

i. e., in the transformed coordinates, K(Q, P, t) is the new Hamiltonian 

21 

and 

aK Q. = - 
1 ap. 

1 

(i = 1 ,  ..., n )  

a r e  the new canonical equations. The particular transformation which 

transforms H(xJ , t) into K(Q, P, t) 0 is especially important since in 

this case: 

( i =  1, ..., n) 

These equations integrate immediately to  give 

i Qi = constant = B  

( i=  1, ..., n) 

P. = constant =a. , 
1 1 

(4.2) 

i. e . ,  the new canonical variables are constants of the motion. 

If the canonical transformation between the variables { x , A  } and {P, Q} 

is t o  be nonsingular, 2n of the 4n variables must be independent. With 
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some foresight, let the set {x,P) be the independent variables. Define: 

(4.3) 

Then if the transformation from {x,k } t o  {P, Q} is t o  be canonical, 

Eq. (4. 1) must be satisfied, i. e., 

n 

i = 1  

d 
i i  dt 

n n 
1 - H x h . P  - K +- [S(x,P,t) - 2 Qi(x,P,t)Pi] .  

i = 1  i i  i =  1 

Carrying out the differentiation yields 

a s  k. +- Pi J :!k~ 1 a p .  
a s  n n 

Z 2 . k  - H = Z Q.P. - K +  
1 1  1 1  i =  1 i = l  i -  1 1 

n 

i = 1  
[Q.P. tQ.P.1. 

as 
at + - -  

1 1  1 1  

The ref o r  e, 

) =  0.  a s  
at 

n as )@. + (K - H - - as 
ax. 1 a p .  1 

n 
Z (Ai  - -)k. + Z (Qi - - 

i = 1  1 i = l  1 

But the set {x, P} is independent so the coefficients of these variables 

along with the remaining expression must vanish, and thus: 

(i = l ,  ..., n) (4.4) 
a s  
a p i  , Qi= - 

a s  
a t  K = H  +- 

Then f o r  the important special case when K E  0 (which implies, Qi = pi 

and P. =a. from Eq. (4.2)),  one obtains the Hamilton-Jacobi equation 

(H-J equation): 

1 1 
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where 

- as 
h i - =  

1 

(i = 1, ..., n) - as 
p i - = *  1 

(4.6) 

The function S(x,a , t )  is called the generating function for the t rans-  

formation f rom {x,X} t o  {a, }. 

As in ordinary differential equations, a distinction must be made 

between the various types of solutions S(x, a,  t) of the H-J equation, e. g., 

whether the result is a general o r  a particular solution. 
* 

Definition 4.2: A differentiable function S (t, x1 . . . , x a l , .  . . , a  ), n' m 

where the set {a} represents a set of m 5 n + 1 independent parameters,  is 

a solution of the H-J equation, i. e., Eq. (4. 5), if and only if 

as* , t )  +- = 0. as" 
H(x, ax at 

a ) + A of the Definition 4.3 : A solution S(t, x l ,  . . . , xn, a l , .  . . , n 

H-J equation which depends on (n + 1) independent parameters  {a1,. . . , an, 

A }  i s  called a complete solution of order n if  and only if 

Since the function S(t, x, a) enters the H-J equation only through 

its derivatives, the additive constant A in the above definition does not 

affect the dynamical situation. 

further discussions, and it wil l  be said that a complete solution of the H-J 

Thus, this constant will be neglected in 

equation depends upon n independent constants, i. e. ,  the constants 

n' al, ..., a 
One familiar with the method of characteristics in partial differen- 

tial equation theoryZZ will note that Hamilton's equations a r e  actually the 
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characteristic curves for  the H-J equation. Thus, the complete solution 

of the H-J equation can be found if  Hamilton's equations can be integrated. 

It was Jacobi who proved the converse, i. e., the knowledge of the com- 

plete solution of the H-J equation allows the general solution of Hamilton's 

equations. 

Jacobi's Theorem: Let S(t,x, a) be a complete solution of the H-J 

equation, and let  {p} be a set of n arbitrary constants. Then, where 

( i=  1, .. . * n), the functions a s  p. = - 
1 aai 

x. = xi(t, a,P) 
1 

( i =  1, ..., n) 

constitute the general solution of the original canonical equations, i. e. ,  

x } do not appear explicitlyin the 1 '" ' '  n Note that if any of the {x 

= o ) ,  or  if the solution I generating function (which implies 

does not depend on n independent parameters,  then the hypothesis of 

Jacobi's theorem is violated and there is no guarantee that the solution of 

the H-J equation is the general solution of the associated canonical equa- 

tions. 

when one utilizes the H-J perturbation theory. 

Although this point is rather obvious, it becomes quite important 

Another subtle, but important, point is t o  always keep in mind the 

independent basic assumption that the set 

variables. F o r ,  if these variables a re  not independent, Eqs. (4.4) a r e  

not valid since they were formed directly f rom this assumption. 

{x,a} represents a set of 2n 



26 

1 

c 
IV. 2 Hamilton-Jacobi Perturbation Theory 

The H-J theory, a s  it stands, is quite elegant but it does not solve 

many problems since it involves the integration of a partial differential 

equation. In fact, if one is given a first-order partial differential equa- 

tion, the usual procedure is to  try t o  solve the equation by the method of 

characteristics. Thus, on the surface, it appears that little is gained 

by converting the original characteristic system (i. e. , Hamilton's equa-- 

tions) into a partial differential equation (i. e., the H-J equation). 

However, in celestial mechanics approximate solutions t o  a great many 

difficult nonlinear problems have been obtained by a perturbation theory 

based on the H-J equation. The only basic restriction is that one be 

able t o  separate the original Hamiltonian into components such that for  

one of these components a complete solution of order n can be obtained 

for  its H-J equation. F o r  example, in celestial mechanics the H-J equation 

for  the two-body problem has a solution, and thus one might use this as  a 

base solution f o r  a problem involving a third body which perturbs the two- 

body motion. 

Before presentation of the perturbation equations, the concept of 

degrees of freedom needs to  be defined for the special Hamiltonian of this 

thesis, i i e : ,  H = Z Xifi. 
n 

i = 1  
Definition 4.4: Let u(t) be a given time dependent input. Let 

2. 

system, and let m C n be the number of functions fi(x, u, t) which a r e  not 

identically zero. Then the system is said t o  have m degrees of freedom. 

A variable x where 2. = f.(x, u, t) g 0, is called a state variable. 

= f.(x, u, t) (i = 1,. . . , n) be the equations of motion for a dynamical 
1 1 

- 

j '  J J  
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Thus, there exist m state variables for a problem which has m 

degrees of freedom. In the trajectory problem, for  example, thrust, T, 

if assumed constant , is a typical quantity which is not a state variable 

by the above definition. Another consequence of the above definition is 

that the Hamiltonian has n degrees of freedom (for the system 

2. = f.(x, u, t), (i = 1,. . . , n)) if and only if the set  of n Lagrangian 

1'"" n multipliers { A 

1 1  

X } appear explicitly in the Hamiltonian. 

The perturbation equations will now be developed. Let H(x, A ,  t) 

be the Hamiltonian for a system with n degrees of freedom. Then, 

define 
H(x, A ,  t) = Ho(x, 1, t) - H+X, 1, t), (4. 7 )  

i. e.,  separate the Hamiltonian into two components where Ho is 

called the base Hamiltonian and H1 is called the perturbing Hamiltonian. 

Assume that a complete solution of order n(i. e.,  depends on n inde- 

pendent parameters) exists for the H-J equation 

a s  a s  
a t  0 ax + H (x,- , t) =O. - (4.8) 

Then by Jacobi's theorem, there exist 2n constants {a ,P}  such that 

* * 
hi = hi ( t , a ,p) .  

a r e  the general solutions to  the canonical equations associated with Ho. 

Consider Eqs. (4.4). F o r  the total problem: 

+ H =- a s  + Ho - H1. a s  
at  at  K =- 

as But, by Eq. (4. 8), at + Ho = 0 which implies that 
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Therefore, the general solutions of the total problem, 
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a r e  now functions of variable a- and p- quantities which a r e  governed 

by the perturbation equations, i. e. Eqs. (4.10). The 2n constants of the 

motion for the total problem a r e  given by the integration constants of 

the perturbation equations. 

Although the Hamiltonian in Eq. (4. 7 )  was separated into only two 

par ts ,  it can actually be separated into as many par ts  as one desires. The 

I 
same procedure is followed for  a multi-component separation as for the 

two-part separation, and a n  example of the multi-component procedure 

is given in Chapter V. 

Given a Hamiltonian, there are many ways in which it can be sepa- 

rated and, indeed, the way it is separated usually determines the outcome 

of the problem. To effect a separation of variables of the base H-J equa- 

tion, one can also arbitrari ly add and subtract terms to  the Hamiltonian. 

This procedure increases the power of the method even more. But, in 

choosing a base Hamiltonian H one must always keep in mind the 

basic assumption that the set  {x ,a}  is independent; and one must be 

0’ 

able t o  find a solution of the H-J equation, associated with Ho, which 

contains as many independent constants as there  a r e  Lagrangian mdti- 

pliers appearing explicitly in Ho. 

this solution can be completed (i. e. , made into a complete solution for 

The following theorem will show how 
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the n-dimensional problem), and thus the solution will be an admissible 

base generating function for  the perturbation theory. 
t 

Theorem 4 . 1 :  Let H ( x l , . .  . , xn, A l ,  . . . , A n , t )  be the Hamiltonian 

for a dynamical system with n degrees of freedom. Let 

H = H o ( x l , . .  . , x  
* 

tonian, and let  S (x 1, . . . , 
A l , . .  ., Xk, t )  ,with k < n, be the base Hamil- 

0 n' 

t) be a solution of the H-J xns a l s - * . , a  k' 

equation for H depending on k independent parameters {a 1 S * * ' S  ak) 
with .et[-- a's* O # 0, (i, j = l , . .  . , k ). Then, 

axiaa. 

* n 
T 

x al, ..., a t) + C a x  1'"" n' k' i '=k+ 1 i i' S' E s ( x  

where { C L ~ + ~ , .  . . , a 

tion of order n for the base H-J equation. 

Proof: F o r  SI t o  be a complete solution of order n for the H-J equa- 

tion, i.e., 

} are independent parameters,  is a complete solu- n 

(4. 1 1 )  

a } must be independent; the set { al, . . . , n 
I 

i, j = 1 , .  . . , n; and S must satisfy Eq. (4. 11)  identically. By hypo- 

thesis, the set of parameters { al,. . . , a } is independent, so the 

determinant property will now be shown. 

n 

Since the a i = k + 1, . . . , n, will only appear in the  summation i' - 9 .  

as '  a's' - - 6ij, where I 
t e rms  of S , it follows that - = x. and thus, 

6 . .  is the Kronecker delta, for i ,  j = k + 1 , .  . . , n. 

aai 1 ax. aa 
1 j  

Then the nth order 
1J 

determinant is 

, 
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D = det [ fyiaj] = 

I a's I I 

lo I 
1 0  I 

I 0 ' 1  

I L b'k k x , I ( n - k x n - k )  

Expansion about the nth column gives: 

i , j  =l,..., k. 

But, by hypothesis this determinant is nonzero which implies the n th  

order determinant is nonz e r 0. 
8 

Finally, S must satisfy Eq. (4. 11) identically. Consider the 

following partial derivatives: 

as" t o = -  as* I 

a s  - 
at a t  a t  - - -  

as" as '  as* 
ax. ax. ax. + o  = -  - = -  

1 1 1 

t ai as" a s '  
ax. ax. - -  - -  

1 1 

(i = 1, ..., k) 

(i = k +  1,.  .., n). 

and since h (i = k + 1,. .. , n) does not appear 

the H-J equation is not affected by the summation 

a s  But, h . =  - 
1 axi 9 i 

explicitly in H 

te rms ,  i.e., 

0' 
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Therefore, S satisfies the H-J equation identically and the theorem 

is proved. 

Note that the summation terms in S' just define the identity trans- 

~ k + ~ ,  . . . , x formation for the variables 

motion for the problem defined by Ho since A 

appear explicitly in H 
0' 

lied t o  any subcollection of terms appearing in the total Hamiltonian. 

which are constants of the n' 

+ l , . . . ,  A donot n 

Thus, the perturbation procedure can be app- 

But, 

if one is concerned with obtaining an approximate solution t o  the total 

problem, then a s  many terms as possible should be included in Ho. 

A summary of the above perturbation theory will conclude this 

chapte r . 
(1 .  ) Let H(x, A ,  t) be the Hamiltonian for a system with n degrees 

of freedom. Define 
k 

where a complete solution of order n is known for the H-J equation 

of Ho. 

(2. Let x ( ~ )  = x ( ~ )  (a, p, t) ;  A(') = do' (a, p, t) be the solutions 

of the canonical equations associated with H 

l em Ho - H a r e  given by x(l) (a, b, t) = x(O) [a(a,b, t),  P(a, b, t) ,  t ]  

The solutions to  the prob- 
0' 

1 
(1) ( 0) A ( a , b , t ) =  A [ a(a,b,t), p(a,b,t), t ] ,  

The variable ai and p. quantities a r e  determined by the integration of: 
1 

(i = 1, ..., n) 
-aH1 

pi = - aa  * 

where H1 = H1 [ x ( O ) ( a ,  p, t), A'O) (a, p, t) , t ] . The n-vectors a- {ai.. . a,}, 

, 



b - ( b  1"' bn)  represent the integration constants of the hi and p i  

equations, respectively. That is, 

6. 

a l  is the integration canstant for  the 

-equation, b l  is the integration constant for the B, -equation, etc. 1 

( 3  ) The solutions of the H - H1 - H 
0 2 problem are then given by 

( cy  d, t) = h(') [ a(c,d,  t), b(C, d, t), t] . ... 

The variable ai and bi quantities a r e  determined by integration of the 

f 

equations: aH2 5 = -  
i ab. 

1 (i = 1, ... n) 

- aH2 - Li - aai ' 

(1) where H2 E H2 [x(')(a, by t), A (a, by t), t]. The n-vectors. c {c - * - Cn) , 1 
d 

equations , respectively. 

{d l . .  . dn} represent the integration constants of the b. 1 and Bi 

(4. ) Continue in the same manner as (3 ) until the complete Hamil- 

tonian, H, has been solved. 

Instead of expressing the perturbing Hamiltonian as a finite sum, 

Then, one usually expresses it as a rapidly convergent infinite series. 

the above procedure is applied to the major terms of this infinite series.  

In Appendix By the method of separation of variables and the method 

of characterist ics pertaining to  the solution of first order partial differen- 

tial equations a r e  discussed. One usually needs to  make use of one or 

both of these methods in determining the complete solution of the base 

H- J equation. 



CHAPTER V 

DEMONSTRATIVE EXAMPLES O F  THE THEORY: 

ZERMELO'S PROBLEM 

The preceding theory will now be applied to  a simple problem 

for which the analytical solution is known. 

suggested by ZermeloZ3 in 1931, and has recently appeared in the 

literature 2 4 y  25' 26 in the investigation of guidance and control problems. 

The statement of the problem used here is due t o  Kelley. 

This problem was first 

24 

Zermelo's Problem: A ship moves at constant velocity V, rela- 

tive t o  water, through currents having constant velocity components 

p and q in the x and y directions, respectively, of a car -  

tesian coordinate system. Find the path of minimum time from the 

origin t o  a specified fixed point xf, yf' (See Fig. 1.) 

As Kelley notes, this problem is similar to  the problem of intercepting 

a moving target in an appropriate relative coordinate system. 

V. 1 The Hamiltonian for  Zermelo's Problem 

With reference to  Fig. 1, the equations of motion for the boat 

a r e  ~ = p t v ~ ~ ~  e 
y = q t V  sin 9 ,  

where 8 is the angle measured between the local horizontal and the 

direction of V. The angle 8 wil l  be referred to  a s  the control angle. 

By Eq. (2.2), the Hamiltonian f o r  this system is 

H '  = "; (p + v cos e) + 1; (9 + v sin e), 

where the primes a r e  used here  since a change of variables will be 

33 
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Fig. 1.. Geometry for Zermelo's Problem. 
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performed later. Application of Eqs. (2. 6) then give the following 

Hamilt on's equations 
I - - aH x -- I = p  t v c o s  e 

ak 1 

y - - -  - aH 

ax2 

I 

- q + V  sin 8 I 

Application of condition (i) of the maximum principle gives 

I I 
t 5 v COS e = 0. aHt  

a e  - = - Ai V sin 8 

Then, when V #  0 ,  this equation becomes 

1; tan e =  . 

(5 .1) l  

(5 .2 ) '  

Thus, I I 

sin 8 = x2 I , cos e = -  I 
I E  

> 0, so: . But, for a minimum, - a2H1 

ae2 
I I 

k V cos 8 - AiV s i n 8  > 0. - -  - 
1 a2H - 

ae2 
I 

Then, substitution of Eqs. (5. 3) in the above expression gives 

ae" * A  * A  

But, the only way this expression can be greater than zero is if the nega- 

tive sign is chosen for  the radical. Hence, 
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t 

I 

- I 1  
COS e = - . -I2 

A A t  
sin 8 = - I '  (5.4)l  

Finally, for  this problem, (2n t 1) boundary conditions a re  given, 

namely: to = 0 

x(to) = y(to) = 0, 

X(tf) = Xf, Y(tf) = Yf. 

Thus, one more condition must be determined, and it follows from . 

Eq. (2. 7 ) .  Since t is unspecified, Eq. (2. 7 )  gives f 
I 

[H dt], + dtf = 0, 
f 

where G(x t ) = tf is theperformance index. Then f '  f 

I 
[H + 1 3  dtf = 0. 

tf 

Since t is unspecified, it fo l lows  that f 
I 

H (tf) = - 1. 

For  convenience, let 
I I I 

X = - A  A = - A  and H G -  H. 1 -  1 '  2 -  2 '  

Then, 

I 

x2 
- 

x2 - A2 t a n O = T = -  - - 
x1 - l 1  h l  

Io2 = 0 

( 5 . 5 ) )  

(5.1) 

(5.2) 



l 1  cos = - x2 
A sin = - A '  
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(5.3) 

where d m  = 4- . Since the control angle 8 

is now strictly a function of A 

with A 1 ,  A;, and H again. 

and 12, one need not be concerned 1 
I I 

With the above change of variables and Eqs. (5 .3- ) ,  the 

Hamiltonian, H, can be written as 

1 vA2 1 + A2(q +h H ' x l (p  t T  1 

H = Alp + A 2 q  t V  Jq-q-. (5.5) 

The results from the above change of variables a re  true, in general, 

fo r  systems defined by equations of the form: 

I I 1  I T 1  
k =f(x ,h  , t ) =  g(x, t )  t f ( A , t )  , = -gx A ,  

4 (A;)2 t ( i2)' t (A;)' , H(tf) = - 1, IT T H = A g(x,t) - m 

where g(x, t) is the vector of nonthrust t e rms  of the equations of motion 

and ( )T is the transpose of ( ). These results a r e  t rue  since 

is a linear, homogeneous system of differential equations. . I  T I  A = - g  A 
X 

1 I 
That is, i f  one defines A = - A , H = -H , then 
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t 
and, H (tf) = - 1 + H ( t f ) =  1. Thus, there  exists a definite 

relationship between the sign of the radical expression ZJ- 
in the Hamiltonian and the transversality condition H(t ) -= 1. 

one can choose whichever sign is  most convenient without violating the 

m 
Hence, f 

maximum principle. 

The analytic solution of Zermelo's problem is straight-forward and 

is given in Appendix C. For  the purposes of this chapter it wil l  be assumed 

that the problem is solved when the following three nonlinear algebraic 

equations are obtained in the unknowns. A 1 ,  X2, tf: 

"f = Lp t v  X l / 4 W ]  tf 

Yf -[q - + v  X 2 / d T 1  t* 

Alp + A  2 q +Vd- = 1. 

All  of the analytic methods of this chapter will involve the solution of 

these equations at one point or  another in their  analysis, so they will be 

solved only once in Appendix C. 

Y 
V. 2 The Solution - b r  the Poincare Method 

-. - -  .__ - 
/ Since the Poincare method is dependent upon a small-parameter, 

assume that the velocity of the boat, V, is l e s s  than the velocity . 

of current (i. e . ,  V 2 2  2 
< p + q ). The solution of this problem will then be 
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similar t o  the analysis of a low-thrust transfer trajectory where the 

Hamiltonian due t o  the current is analogous t o  gravitational forces, and 

the Hamiltonian due t o  V is analogous to  the thrusting forces. (That is, 

a typical trajectory problem is of the f o m H  = H + T 4- , where G m  

represents the gravity forces. Note that the radical dm HG 

appears in Zermelo's problem also, so that Zermelo's problem has the 

same functional form as  the usual trajectory problem, but it is much 

simpler. ) 

Zermelo's problem will now be solved by the Poincarg small- 

parameter expansion method. Assume that the solutions a r e  of the form 

x = X ( O )  + VX(l) + v 2 x ( 2 )  +... 
y = , ( o ) + v y ( l ) + v  2 y ( 2 )  +... 

Following the theory of Chapter 111, the Hamiltonian (5.5) is written as  

H- (1 p + h2q) +V 4- = H +VH1. 
1 0 

Then, the zero-order equations and their solutions a r e  

1 X(O)  = pt + c 

y(O) = qt + c2 
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where c 1' C2' c y  c4 a re  integration constants. 

Note that if one applies the given boundary conditions t o  the zero- 

order solution, the constants c and c a r e  overdefined and there exists 1 2 
no coupling in order t o  solve for c and c in te rms  of the given con- 3 4 

stants x , yo, xf, yr 

zero-order solution is, physically, the motion due to  the current alone. 

This should be the case, however, since the 
0 

Therefore, V should not enter the zero-order solution and neither should 

the Lagrange multipliers since the zero-order problem is uncontrollable, 

i. e. ,  the path is uniquely determined by the initial conditions xo = yo = 0. 

Thus, the zero-order solution consists of the equations 

where the boundary conditions xo = yb = 0 have been applied t o  determine 

c = c2 = 0. 1 

Now, consider the first-order perturbation equations in the state 

a2H 
(1) ) A ("1, 

2 a2H 

+ X I (  ax,axi )O xi + (ax2axi o i 
+ l )  = (-) aH1 

i = 1  ax2 o 

where x = x and x = y in the summations. The first-order Lagrangian 1 -  2 -  

multiplier equations have not been written since their zero- order equations 

go with the first-order state equations in  this problem. 

Upon evaluation of the pertinent partial derivatives, the first- order 

state equations become 



These integrate immediately t o  give 

t + d2. 

Thus, to  a first-order approximation, in the state: 

(x)l = x ( O )  + VX(l)  = pt + v C 3 t /  ET- c + c 
+ d l  

Application of the x 0 - - yo = 0 boundary conditions gives d l  = d2 = 0; 

and application of the xf, yf, and H(tf) = 1 boundary conditions gives 

the following system of nonlinear algebraic equations in the unknowns 

c3, c4, and tf: 

"f = ptr + vc3tf/J- 

Y f = q  t f + vc4tf/J- 

c3p t c4q + v i m  = 1. 

But, comparison with Eqs. (5.6) shows that these equations will repre- 

sent the exact solutions if A (j) = X 2 ( j )  = 0 for j = 1, 2, .. . , Le.,  i f  1 

the Lagrange multipliers a r e  constants. This is indeed the case since 



no state variables appear in the Hamiltonian, and by Eqs. (3. 7) 

= o  = 0, - 0 aH1 
axi axi 
aH - 

which implies 

(i = 1,2) 
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Thus, the exact solution of Zermelo's problem is obtained by 

2 2 2  one perturbation. Therefore, the restriction V < p + q was not 

necessary fo r  this simple problem but, in general, one must have a small 

parameter f o r  any guarantee of convergence. 

The application of the method is fairly straight-forward, but one 

must be careful when applying the boundary conditions. 

most textbook-type discussions of the method, all of the given boundary 

conditions can be applied t o  the zero-order solution, whereas in the above 

example only a proper subset of the set  of boundary conditions could be 

applied to  the zero-order solution. 

blem, if one chooses the gravitational Hamiltonian f o r  the base problem, 

then the zero-order Lagrange multiplier equations will be evaluated with 

the first- order state variable equations since specification of the initial 

state variables completely defines the nonthrust trajectory (e. g., a . 

Keplerian orbit). On the other hand, if one chooses the thrust-portion of 

the Hamiltonian f o r  the base problem, then all  of the boundary conditions 

can be applied t o  the zero-order solution since it is controllable (e.g., the 

flat-earth problem without gravity). 

For  example, in 

In the general optimal trajectory pro- 

V. 3 The Solution bv the Hamilton-Jacobi Method: Low-Thrust Analoev 

In the following sections, Zermelo's problem will be solved by the 

Hamilton-Jacobi method in several ways. In this section, the Hamiltonian 
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will be separated into two par ts  with the base Hamiltonian consisting of 

the current-terms (i. e., the case when V = 0). As mentioned in the 

previous section, this formulation is functionally analogous t o  the low- 

thrust problem. 

In Section V.4, the term V/- will be used as the base 

Hamiltonian, which is analogous t o  a high-thrust problem. In Section V. 5, 

the Hamiltonian will be separated into three par ts  to  demonstrate the pro- 

cedure which must be used when the Hamiltonian is separated into an 

infinite series or a finite sum with more than two components. Theproper- 

ty of Theorem 4. 1 will also be demonstrated. 

By Eq. (5.5), H can be expressed as 

L L -  H = (Alp + A q) - (-Vi Al + X2) = Ho - H1. 2 (5.9) 

Then, the H-J equation for the base Hamiltonian, Ho, is given by 

as as as 
$ 9 -  = o ,  (5.10) 

where A = -  a s  and A 2  =w. as Assume that 

i. e., Eq. (5. 10) can be solved by a separation of variables. Then, from 

S =Sl(t)  tSz(x)  + S3(y), 1 ax 

Eq. (5. lo ) ,  it follows that 

(5.11) as 1 t q - =  as3 0. 
a t  + P E  

as3 and - But, neither x nor y appear explicitly in Eq. ( 5 .  l l ) ,  s o  - 
a r e  independent constants of the motion, say 

a Y  ax 

as3 
aY = a 2 '  

= a1 and - - ax 

= - (pa1 + qa2). at  It follows that Note that - is also a constant of 

the motion since it is just -Ho, but there exist only two independent con- 

stants above. Thus, it would have been just as correct to choose. 
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as3 , - } as the two independent constants. - }  o r { -  
a Y  at 

as 1 as2 
{ T F ,  ax 

The choice here  does not grearly influence the problem, but in the high- 

thrust-type problem, it will be shown that a judicious choice of the inde- 

pendent set  can simplify the bookkeeping. ) 

as2 and - as3 , the genera- 
ax * a Y  

Thus, with the above values fo r  at , - 
ting function S(x, a, t) for the zero-order solution is obtained by quadrature, 

dY 
- as3 dt+-dx +- ax a Y  

i. e., & = -  asl 
a t  

implies, 

S = - (pa  +qa )t + a  x t a y. (5. 12) 1 2 1 2 

Note that there are no integration constants in the above expression. 

The remaining constants of motion f o r  the zero-order solution can 

be found by applying Eq. (4.6) t o  Eq. (5. 12) 

a s  
B, =- aa 

1 

a s  P2 = -  
aa2 

p = - p t + x  1 
d 

p2 = - qt + y. 

(5. 13) 

Since S(x, a, t) is a complete solution of Eq. (5. 10). , i. e., S depends 

on two independent parameters  a1 and a 2' and det[,zs axiaa. ] = 1 f 0, 

it follows by Jacobi's theorem that the inversion of the ai - and pi - 
equations will give the general solution of the zero-order Hamilton's 

equations : 
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a1 = X  .I 

a2 = X 2  

p = -pt + x 1 

P, = -st + Y 

h2 ( 0)  = a2 

(5. 14) 

X(O) = pt + $, 

y(O) = qt + $,. 

For  the tot a1 problem, the parameters a l ,  a2, P,, $, are not, in 

general, constants of the motion, but their  time rates of change a r e  given 

aH1 Er.  = -, 
1 

(i =l,  2) (5. 15) 

where Hl(a, P, t) E H [x(O) (a, P,t), (a, p , f )  1 Thus 1 

Eqs. (5. 15) then give 

EL = o  1 

ELz = 0 

a = a l  1 

O2 = a2 + 

where {al, aZ, bl ,  bz} is the set of constants of the motion for the total 

p r  oblem. 

Then, the solution of the total problem is given functionally by 
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x(a, b, t) = do) [ a(a, b, t), P(a, b, t), t ] 

X ( a ,  b, t) = X(O)  [a(a, b,t) ,  @(a, b, t), t 1; 

or upon substitution of the variable (1.- and Pi - quantities in 

Eq. (5. 14) 

1 

X = a  X2 =a2 1 1  

x =pt+(Val/d-) t + b l  

y = qt +(Va,//-) t + b2. 

= 0; and the general solutions are 
YO 

Thus, bl  = x = 0 and b2 = 
0 

(5. 16) 

Application of the terminal boundary conditions then gives the desired sys- 

t em (that is, Eqs. (5.6): 

xf = ptf +(VA1/ tf 

If one had attempted the solution of Zermelo's problem without 

using the perturbation theory (i.e., by applying the H-J equation to  the 

total Hamiltonian), the problem would have been much more difficult. 

then, the H-J equation would have been 

For  
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and the solution of this equation cannot be effected by a separation of 

variables. But, by simply splitting the Hamiltonian into two parts,  the 

s dution was obtained in a straight-forward and simple manner. 

V. 4 The Solution by the Hamilton- Jacobi Method: 
High - Thrust Anal ogv 

Now consider the case when the velocity of the boat, V, is greater 

than the current-velocity, /=. 
influenced by the t e r m  V/- in the total Hamiltonian, and thus 

Then, the motion should be mainly 

H = (V dm) - (-Alp - h 2 q ) =  Ho - H1 (5. 17) 

With the above definition f o r  H the base H-J equation is: 
OS 

Assume S = Sl(t) + S2(x) + Sj(y). Then, 

+ v  Jn (-) +(- = o ,  
a t  

th  r 

Since neither x, y, nor t appear explicitly in Eq. 

exist three possible choices for  the set  of two inc 

(5.18) 

(5. 19) 

spendent para  - 
meters ,  i. e., 

as 3 
' -  I .  (-aT, T I ,  +-* a Y  ax * ay 

as3 - 1 ,  or i- asl as2 

Since the classical theory usually takes advantage of the constant base 

Hamiltonian property, l e t i  - - - - Ho, - } be the independent parameters,  at ax 

I 
I 

1 

! 
1 
I 

I 
j 
I 

I 

i 

I 

I 
i 

1 
! 
I 

I 
! 

i 
1 
I 

I 

i 
I 

i I 
I 

~ 

I 
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i. e . ,  

as3 
at - ai' 2' By - "2 

- = a  - = f  - 

It follows that the generating function is 

/ i l 2  
2 

- a 2  . s = a t t a2x * y J7 1 
1 

Then, the two additional constants of the zero-order motion a r e  given by 

Since S depends on two independent parameters and 
-. 

a's 
f a /(V2 d-1- # 0, it follows that S is a complete 

'et 1 aaiax 1 = '1 1 
j 

solution and thus: 

a3  = - v/- a2 = A 1  

J- . - 
B2 = x + a  2 y/' a /V 

The inversion of these equations then gives the base solution 

( 0 )  
A1 = a2  

(5. 20) 
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In a manner similar to  the problem of the previous section, one finds: 

Hl(a,  p, t) = - pa2 i q,/- . 

aH. Thus, 
1 = o  

h1 =ap, 
1 

h2 = *,= O 

p = -  aH1 - =*a1q/(.V2/ @T) 2 
2 23, 

The integration of these equations gives 

a1 = a l  

/3,=Y&alqt/(rZ/,/-) + bl  

B, = [ps a2q/ /-] t + b2. 

a2 = a2 

(5.21) 

Thus, a l ,  a2, bl ,  b 2  a re  the constants of motion f o r  the total problem, 

and the general solution of the canonical equations is obtained by substi- 

tuting the a and pi of Eq. (5.21)  into Eq. (5. 20): i 

h = a  1 2  A 2 = *  &- 
a2V2 a p t  

t + b 2 + -  a + bl - t ]  

(5 .22)  

1 1 
1 

Y =  + b.. - t l  . 
1 a 

But, 

a l  = =at a s  = - q-, 
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s o  on substituting these expressions into the state equations, the 

following expressions a r e  obtained 

Application of the initial conditions gives: 

0 = b 2 - A lVbl/Jh + A: 

which implies: bl  = b = 0. Thus, at 2 

A l p  t x2q t v J- = 

the final time: 

1, 

which is the exact solution for  X1” 5, and tf‘ 

The above solution was more difficult t o  obtain than the solution 

given in the previous section because of bookkeeping-problems. . Thus, 

suppose that the set  { ax 
parameters instead of following the classical theory in  choosing the base 

} had been chosen as the independent - as3 
’ a Y  

Hamiltonian as one ci the parameters. Then, by Eq. (5.19) 

, and- at  = - V  J-. as2 as3 ? = % , a 2 = -  
a Y  

Thus, S = -VJaf t ai t + a x + a y. This is a complete solution 1 2 

t o  the base H-J equation, so: 



I 
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J Z  as 
aa P, = -  = - V a l t / a  + a  + x 

1 

p2 - --E- = - va,t/,/= + y 
aa2 

x = V a l t /  JR + p, 

Then with H1(a, P , t )  = - h 

change of the independent parameters are 

p - h 2  q = -a lp - azq, the time rates of 

&l = h 2 = O ;  $ , = + p ; a n d P 2 = + q .  

Therefore, a ,  = a,, az = a2, P, = pt + bl ,  P2 = qt + b2; and upon sub- 

stitution of these variable parameters in Eq. (5.2), the desired solutions 

are obtained. 

This solution was effected more easily than the previous solution 

since the independent parameters of the above problem were "natural" 

f o r  Zermelo's problem. Thus, if there  exists more  than one possi- 

bility for the set  of n independent parameters for the base solution, one 

should thoroughly investigate the implications of choosing one set  over 

the other. 

V. 5 Miscellaneous Topics 

The Hamiltonian will now be separated into a sum with three com- 

ponents to  demonstrate the procedure when the perturbing Hamiltonian 

consists of more than one term. F rom Eq. (5.5); 

H =  V h + A 2  - (-ph,) - ( - q X 2 )  r H o  - H1 - H2. J 2  
The solution for Ho is already knownfrom Eq. (5.2), i. e., 



Thus, H1 = - p \  (O)(a,  p, t) = - pa1. Then, the perturbation equations are:  

hl  = b2 = p, = 0, p, = p .  

These expressions integrate immediately t o  give 

- a2, B, = b2, and B l  = pt + bl. O1 = al' a2 - 

The first-order solutions (i. e. ,  the solutions t o  the Ho - H1 problem) 

a r e  

X ") = V a l t / d R  + pt + bl  

Y (I) = Va2t/  &= + b2 

x l ( l )  = al 

E'2' 1) 
= a2' 

Finally, H2 = -qX ("(a, b, t) = -qa2. Then, 2 

B1 = d2 = El = 0, lj2 = q, 

which integrate t o  give 

, 

a = c l ,  a2 = c,, bl = d l ,  and b2 = qt + d2. 
1 

Therefore, the solution of the total problem is: 

x = Vclt/ 4- t pt t d l  

X = c  2 2' h l  = c1 
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Suppose that one of the current-velocity components, say q. is 

identically zero,  and that the problem is such that one wishes t o  t reat  

the Hamiltonian due t o  the boat velocity as the perturbing Hamiltonian. 

Then, 

The base H-J equation is: 

which leads to  

a s  - as 
ax - - a l ,  at = - p a 1 .  

The generating function is then dependent upon only one independent 

parameter,  i. e., 

S = - p a t t a x ,  1 1 

and thus, it is not a complete solution of order two. 

is that, physically, the zero-order solution has motion only in the 

x-direction with y remaining constant. Theorem 4.1 can then by used to  

"complete" the generating function s o  that it corresponds to  the physical 

situation, i. e.,  

The reason for this 

I 
S = S  ta y = ( -  pa t +a  x) t a y. 2 1 1 2 

Then, 

01, 
( 0 )  - X ( O )  = pt t xo, y - yo =constant, 

whjch is the correct  solution of the zero-order Hamilton's equations. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

VI. 1 Summary 
/ 

The application of the Poincare and Hamilton-Jacobi perturbation 

methods to the optimal space trajectory problem have been considered and 

particular aspects of the methods which a r e  of interest in optimal trajec- 

tory analysis have been noted. Zermelo's problem was solved in various 

ways t o  demonstrate the basic theories, and to  emphasize certain impor- 

tant points of the general perturbation theory when it is applied to  the 

optimal t ra j e ct ory p r  oblem . 

VI. 2 Conclusions 

1. As shown in Chapter 111, the Poincar: method is straightforward 

and relatively easy t o  implement. Thus, if one has an  optimal trajectory 

problem with an apparent small-parameter, one may either gain valuable 

analytic information o r  obtain first guesses for the Lagrange multipliers 

for use in one of the standard numerical iteration schemes by application 

of this method. 
f 

2. Since the perturbation equations of the Poincare method are 

linear, f i rs t -  order ordinary differential equations, the possibility exists 

for  using the approach as a numerical integration scheme. 

application of the boundary conditions in this case is not straightforward, 

But, the 

i. e.,  one knows the initial value of, say, xi, but not the initial value of 

( 1 )  X. 
1 

5 4  
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3. The Hamilton-Jacobi method with its great flexibility offers 

the most hope f o r  obtaining good approximate analytical solutions t o  non- 

trivial optimal trajectory problems. 

V, the method can be applied in many different ways as long as certain 

basic assumptions are not violated. 

dependent upon the way in which the Hamiltonian is approximated (or 

expanded), so  some experience in optimal trajectory analysis will pro- 

bably be necessary in applying it to new problems. 

ber of numerical solutions now known, one should be able t o  make certain 

simplifying assumptions as to how some of the functions behave. 

next section, two possible simplifying assumptions are noted. 

As demonstrated in Chapters IV and 

Of course, this method is strongly 

But, with the vast num- 

In the 

4. As a consequence of Theorem 4. 1, any portion of the total 

Hamiltonian can be treated as the base Hamiltonian in order t o  ''build up" 

to the solution. Thus, in theory, one could attempt a solution t e r m  by term. 

VI. Recommendations f o r  Further Study 

1. An attempt to  obtain good approximate solutions f o r  high- and 

low-thrust missions, should be made. Since certain simplifying assump- 

tions wi l l  need t o  be made, the following possibilities should be investigated 

(i) Since circumferential thrust is known to  be near-optimal 

f o r  a low-thrust escape trajectory, a base solution for the low-thrust pro- 

blem should be developed in polar coordinates and the perturbing. 

Hamiltonian could then be expanded about the circumferential thrust 

case. 

(ii) Another possibility i s  to assume mass constant in low- 

thrust missions, o r  expand it in a binomial series,  i. e., m = m - Pt ,  
0 



where P G Irn and m > pt, s o  that 
0 0 

- _  1 -  - 1 { 1 t(-) P t t (-) P 2 2  t + ...) . m m  m m -  
0 0 

2. Application of the methods to  the guidance problem should 

be investigated since the ideal guidance law is the general solution of 

the control variables in te rms  of the current state. 

mate general solutions a r e  obtained, they may be feasible for  

det e rmining cl o sed- 1 oop guidance p r  oc edur e s . 

Thus, if approxi- 

3. The possibilities of a semianalytic analysis should be con- 

sidered, i. e. ,  go as  far  a s  possible with the Hamilton-Jacobi theory 

and then numerically integrate the remaining system. 

4. The possibility of using FORMAC t o  check the vast amount of 

algebra and t o  develop the perturbation equations should also be con- 

s ider ed. 

5. The theory should be extended (o r  modified) t o  incorporate 

the conditions for  bounded control problems, sufficiency conditions, etc. 



APPENDIX A 

POINCARE’METHOD WITH A VARIABLE SMALL-PARAMETER 

This development will be essentially the same as in Chapter 111, 

1 
m 

except that (-) will  be the small-parameter where m will  vary linearly 

with time, i. e. , m = m - f3 (t-t ). Consider the time derivatives of (-): 1 
0 0 m 

m 1 

m m 
- ( , ) (  p), where p E I m I = constant; 

d 1  -(-) = - - - 
dt m 2 

1 . d  2 .. 2 3  
m dt 

Define E 3 - . Then, E = - ( E )  = pr , E = 2p E , etc. 

The Hamiltonian in Eq. (2.4) can now be written functionally as: 

n n 
H =  A.f.(x,t)+EX T h . g . ( x , X , t ) r H  + E H  . 

1 1  1 1  0 1 i =1 i= 1 

Assume solutions of the following form: 

2 (2) + . . . - = Ai(0) + k.(t) 
1 

A. = A . ( O )  +  EA.'^) + E A. 
1 1 1 1 

Assuming the analyticity conditions of Chapter 

(i = 1 , .  . . , n )  (A. 2) 

111, the Hamiltonian 

can then be expressed as  the convergent Taylor ser ies  given in Eq’. ( 3.  5) 

with different definitions for the h.(t), k.(t), and H functions defined by 

Eqs. (A. 1) and (A. 2) above. 

1 1 1 

Substitution of the h.(t) and k.(t) functions from 
1 1 
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Eq. (A. 2) into Eq. (3. 5) gives the following expression 

Hamilton's equations must be satisfied, so 

n . aH 

(i = 1, .  . . , n )  (A. 3) 
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n 

j =1 
1 

2 3 
a HQ 't ( 1 )  ( 1 )  

n n  

j=l k=l 
X 

A ( ' ) ] t + Z  Z [ (  ax.ax.ax 1 J k o  j xj k 
/ a H 1  ' 
(ax.al.j j 

t 

1 J O  

The perturbation equations can then be formed by first differentiating 

the assumed solutions (A. 2) with respect to time, i. e. ,  

i. = X.(O) t ex.") t E ( P A i  ( l )  + xi@) o ( ~ ~ )  . . . , 
1 : 1 

3 
where O(E ) indicates third- and higher-order te rms .  

One can see  by these equations that f3 (i. e. , Iml) does not enter the 

equations until the second-order terms,  so for f3 small, to a first approxi- 

mation, one can reasonably assume p = 0 (i. e . ,  mass  constant). The per -  

turbation equations through second-order a r e  then obtained by equating the 

coefficients of like powers of E in Eqs. (A. 3) and (A. 4): 
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APPENDIX B 

ANALYTIC METHODS FOR SOLVING FIRST-ORDER 

PARTIAL DIFFERENTIAL EQUATIONS 

In this Appendix brief descriptions of the separation of variables 

method, the method of characteristics, and Pfaffian systems will be 

given for easy reference. The theory f o r  these descriptions may be 

found in References 22, 27, and 28. Since this thesis is concerned 

with only one partial differential equation, i. e. , the Hamilton-Jacobi 

equation, this analysis will likewise be concerned with only the H-J  

equation. This restriction omits the possibility of the dependent 

variable (i. e . ,  the generating function S )  appearing explicitly in the 

partial differential equation. That is  , the dependent variable may only 

appear as a derivative with respect to  one of the independent variables. 

Recall the H-J equation, i. e . ,  

t )  = 0.  as a s  - t H(x, - at ax, 

as x E t ,  p. E- ax. 
- a s  

Po - a t y  0 
-- 

1 

Define: (i = 1 ,  . . . , n )  . 

Then the Hamiltonian- Jacobi equation can be written in the following 

functional f o r m  

F(xo, xl, . . . , xn, po, p l y  . . . , pn) = 0 .  

The forthcoming analysis will be with respect to Eq. (B. 1) 
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(E. I) 



62 

B. 1 Separation of Variables 

The method of separation of variables is most useful as an 

“inspection” method, although necessary conditions for an equation t o  

be separable can be developed (e. g . ,  see Ref. 2). In this section, 

the inspection properties will be discussed and not the formal develop- 

meEt of the necessary conditions for separability, since one usuaily 

employs the method of characteristics if a separation of variables is 

not readily apparent. 

Suppose, by inspection, that Eq. (B. 1)  can be written in two 

par ts  s o  that one of the par ts  contains, at most, one of the independent 

variables, say x and its associated partial derivative, pj, i. e . ,  
j’ 

i i j  

Then, F1(Xj,Pj) = - F2(Xi,Pi) 9 (B. 2) 

auu L l l L 3  equation must ’noid true f o r  aii vaiues of {x olxl, - * * Y X*) 

i f j  

-- -3 *1-: - 

within the domain of definition fo r  the given problem. Assume that 

the solution of Eq. (B. 1) is of the form 

s = s (x.) t s ( x )  . 
1 . l  2 i  

if j 

Then, p = - as - - --+-p = p.(x.) , i. e . ,  p. is a function of x alone. 
j ax. ax j J J  J 

J j 

Then, with the assumed solution (B. 3 ) ,  Eq. (B. 2) can be written as: 



t 

6 3  

But {xo, x l ,  . . . , x } constitutes a set of n + 1 independent 

variables, s o  an arbi t rary variation in any one of the variables (and, 
n 

in particular x.) does not affect the other variables. Then, 
J 

F l ( X j  + 6 ~ .  , P.(x. + 6x.)) = - F (x p ) J J J  J 2 i’ i 
i #j 

which implies 

1 ’  F1(xj, p.(x.)) = F (x + 6x pj(xj + 6x.)) = constant 3 A 
J J  1 J  j’ J 

Thus, the equation F ( x  p.) = A 1  can be used t o  solve for 
1 j’ J 

a s .  

and then: 

S = ]p.(x A1) dx. + S2(xi) . 
J j’ J 

ilt j 

The same procedure may then be applicable t o  F i .e . ,  there 
2’ 

may exist an x # x such that 
k J  

where F j  t F4 =F2 . 

t imes,  in which case the n constants necessary for a complete 

In fact, the procedure may be applicable n 

solution of the H-J equation will then be defined, and the determination 

of the generating function i s  then simply a 

of the form 

]pi(xi,Al, . . - , A m ) dxi ( m g  

matter of integrating t e rms  



Even if all n constants f o r  the complete solution cannot be obtained 

by separation of variables, one should attempt t o  obtain at least a 

partial separation of variables, and then apply the method of charac- 

ter is t ics  t o  the resultant equation. 

B. 2 -Meth.,sd of Characteristics 

Every first- order partial different-a1 equation can be represented 

by a system of ordinary differential equations called the characteristic 

system for the partial differential equation. The characterist ic system 

for (B. 1) is 

dx . 
1 - a F  - - -  

d-r aPi 

(i = 0, . . . , n) 

n dx . dS 1 - = z  
i = O  dT Pi F* 

Note that if the physical variables (i. e. , H, x, X, S, and t )  are sub- 

stituted in Eqs. (B.  5), the f i rs t  two sets of equations wi l l  become 

Hamilton's equations with T = t. Thus, the characteristic system and 

Jacobi's theorem show the equivalence of the representation of a 

dynamical system by either Hamilton's equations o r  the H-J equation. 

In solving the H- J equation, the method of characterist ics is used 

most effectively in conjunction with the method of separation of 

variables. That is, one 'first determines as many constants of the 
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complete soli tion as possible by s paration of variables (i. e. ,  a 

partial separation of variables is effected), s a y  A . . . , A where 

k < n, and then Eq. (B. 1) is written as: 

n ’k’ 

1’ k 

* 
* . . , p n ,  A1 ,..., A ) = O  03.4 1 k F (5, - * e >  x 3 

It is assumed, without loss of generality, that (x o ’ x l t  ¶ 

1 have been eliminated f rom Eqs. (B. 1) by 

Eq. (B. 6) is then a 

’k- 1 x . p  YP ,-- . ,  
substitution of the constants {A 

k-1 o 1 

. . . ,Ak}. 
1’ 

partial differential equation in n-k+l variables instead of n + 1 

variables, a s  is Eq. (B. 1). 

The characteristic system for Eq. (B. 6) is 

* 
dpi aF  - -  - -- 
dT ax. 

* 
where S is defined by the equation 

(i = k,. . . , n )  

k- 1 f s = I; Jp.(x.)dx. + S’(Xk’. - ,xn). 
3 3  3 j =O 

One then need only find n-k constant relationships f rom the first two 

se ts  of n-k+l equations of Eqs. (B. 7) in order  to have the necessary 

number of constants for a complete solution. If it is not possible to 

obtain n-k constant relationships, one should find as many as possible 

and then go back to the separation of variables method and so on 

until n constants a r e  obtained, if possible. 
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One of the most powerful aspects of the Ham-ilton-Zzcobi theory 

is that one need only find n constants of the motion by integration, 

whereas the solution of Hamilton's equations involves 2n integrations. 

That is ,  when one obtains the complete solution to  the H-J equation in 

terms of n arbi t rary constants, the remaining n constants of the 

motion can be obtained by difierentiation. 

B. 3 Pfaffian Svstems 

If one obtains some of the constants for the complete solution of 

the H-J equation by application of the method of characterist ics,  it is 

a s  
more  likely than not that one wi l l  have partial derivatives, - Y of ax. 

1 

the functional form 

(Xp'XqY . * Y Xr) Y 
as - a s  
ax. ax. - _ -  

1 1 

1. e. , - as will depend on more than one variable. Consider, for ax. 
1 

example, the solution form of Eq. (B.8). The total differential of 

S is 
* 

dS = p.(x.)dx + C - n as (xk, . . (B-  9 )  k- 1 

j = O  J J j m=O axm 
* y X n ) d x  m . 

Thus, to determine the generating function S ,  one must integrate 

Eq. (B.9).  The integration of the first summation of terms is 

straightforward, but the integration of the second summation of terms 

in Eq. (B. 9) is not since the coefficients of dx may be functions of 

other variables than x This integration problem has been extensively 

m 

m' 
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investigated in the literature and is usually called the Pfaffian problem. 

Definition B. 1: 27 
n 

The expression Z 
i=  1 

Gi(x1, . . ., x ) dx. is  n 1 

is called a Pfaffian differential form in n variables: and the differential 

equation 

n 
Z 
i= 1 

G1(xi, . . . , xn)dxi = 0 

i s  call -1 the Pfaffiafi differential equation. 

From this definition it follows that one must be able t o  integrate 

the Pfaffian differential equation 

dS-p - Z Rm(xk, . . . , xn) dxm = 0, 
m=k 

(E. IO) 

where , in order to  determine the generating as* . , Xn) G - ax m 

function S. Eq. (B. 10) is an integrable Pfaffian differential equation 

since it is separable in the variable S , 

F o r  cases where Eq. (B. 10) i s  dependent upon more than t w o  independent 

variables (including S ), there does not exist a general theory fo r  

integrating the equation. 27 However, integrals can sometimes be 

* 
ST only appears as  dS . 
* * 

i . e . ,  

* 

found by inspection of the functional form of the equation. For  example, 

if Eq. (B.lO) contains a t e r m  of the form R (x )dx then S must be 
* 

m p my 
of the form Pf 

* 
S = R (x )x t S'(xi) , 

m p m  
i im 
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which can be shown by contradiction. That i s ,  assume x does c o t  

appear linearly in S . Then, there exist two possibilities: 

m * 
* 

(i) xm does not appear explicitly in S . But, then 

.I. 

as' 
ax - = R = 0, which is not possible and; m m 

would have to  (ii) xm appears nonlinearly in S . Then, - JI -r as* 
axm 

must equal R (x and thus, this case as* 
m r 3  

contain x explicitly. But, - m ax m 

is not possible either since R (x ) does not depend explicitly on x 

Therefore, x must appear linearly in S , and the only way it can 

appear is in the product form R (x )x 

m P  m' 
* 

m 

m p m' 
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APPENDIX C 

EXACT SOLUTION OF ZERMELO'S PROBLEM 

In Section V. 1 the governing equations for  Zermelo's problem were 

developed, i. e. , Eq. (5. 1 )  through Eq. (5 .4) .  F r o m  Eq. (5. I )  it 

follows that 

A 1  1 constant, and A = constant. 2 

Thus, the equations of motion are: 

1 X 

A x = p t v -  A 1  x = (p + v -)t + C I  A 

+ 
(C. 1) 

X2 
2 ,  y = (q + v -)t t c 

A2 y = q + v -  
A A 

where c = cz = 0 since x(t ) = y (t- ) = 0. 
1 0 0 

Eq. (C. l ) ,  evaluated at 5, and Eq. (5 .4 )  represent a system of 

three equations in the unknowns X, , X,, t,, i. e. , - - L  

A 1  
Xf = (p t v -)t 

A f  

(C. 3) 
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From the f i rs t  two equations of (C.2),  m e  finds 

2 2 

+ A21 B = 1,  and B - - 

Thus, 
2 2 x2 

A2 A2 

2 l l  A =- 

since A2e (,/-)2. Then, 

6 - 8 )  Xf P 2  + ( - - v )  Yf q 2 = l .  

Vtf Vtf 

Upon multiplication of Eq. (C.4)  by V t f ,  2 and separation 

into components of t powers, one then finds: f -  

2 2 (p 2 t q 2 2 v 2 2  I t f  - 2(PXf + qYf)tf -t (Xf -t Y f )  = 0 - 

The solution of this quadratic equation in t gives f 

where the minus sign is chosen if 

and, the positive sign is chosen if the inequality is reversed. 



7 1  

Suppose, for this development, that the inequality (C. 6) is 

satisfied. Then, t is uniquely defined in t e rms  of the known 

parameters of the system. Now, t o  determine the Lagrangian mu1 

tipliers, consider the ratio of Eq. (C. 3) ,  i . e . ,  

f 

A -  l l  

A2 
- - -  A x: 1- 

1 13 '2 

A 
where A and B a r e  both known since t is known. Define C =  - f B 
Then, the transversali ty condition, i. e . ,  the third equation of 

Eqs. (C. 2),  gives 

vcx2 
+ P  d-- 

or ,  upon rearrangement 

Ldl + c' 
i- PC + 

+ q  
+ Vh2 

l2S&- : 

1. . 

Thus, it follows that 

= 1  

(C. i )  
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where 

Eqs. (C.5) and (C .7 )  represent the closed form solutions 

for the unknown final time and Lagrange multipliers. 

control angle 6 is  then 

The optimal 
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